Project: LOW PLATINUM LOADING CATALYSTS

Principal Investigator: Radoslav Adzic

Research Associates: Kotaro Sasaki, Tao Huang

With contributions from Jia Wang, Miomir Vukmirovic and Junliang Zhang (student SUSB)

Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973-5000

(This presentation does not contain any proprietary or confidential information.)

Philadelphia, May 24-27, 2004

OBJECTIVES

To assist the DOE in developing of fuel cell technologies by providing low-platinum-loading electrocatalysts.

- To demonstrate the possibility of synthesizing novel electrocatalysts for O_2 reduction with a monolayer level Pt loadings.
- To further characterize of the PtRu₂₀ electrocatalyst for H₂/CO oxidation and long term tests.
- To gain understanding of the activity of Pt monolayer and the PtRu₂₀ electrocatalysts.

PROJECT SAFETY

- All the work on this project is performed within the controls identified in the Experimental Safety Review (ESR) Form for this Project.
- Personnel have all the training identified by ESR.
- CO sensor installed at the CO tolerance experiment. Hazard evaluation of this experiment was performed.
- •For the work at synchrotron, the safety procedures and the training requirements of NSLS are followed.

BUDGET

TOTAL FUNDING FOR THE PROJECT (FY 02-04): \$624.000

FUNDING IN FY 04: \$250.000

TECHNICAL BARRIERS AND TARGETS

The DOE's Technical Targets for Fuel Cell Stack Systems Operating on Hydrogen (Gasoline Reformate)

	year	2003	2005	2010
precious metal loading	g/kW	<2.0	0.6	0.2
durability	hours	>2000	>2000	>5000
CO tolerance (2% air bleed) ppm		50	500	1000

Development of low-Pt-loading electrocatalysts by placing a submonolayer-to-monolayer of Pt on nanoparticles of suitable metals or alloys to obtain electrocatalysts with the following characteristics:

- ultimately reduced Pt loading
- enhanced activity of Pt
- complete utilization of Pt

Two methods for Pt monolayer deposition were developed:

- 1. Electroless (spontaneous) Pt deposition on Ru.
- 2. Pt deposition by replacing a UPD metal adlayer.

PROJECT TIMELINE

TECHNICAL ACCOMPLISHMENTS

ANODE

- Stability tests at LANL (F. Uribe) show **no loss of voltage after 870 h** for the PtRu₂₀ electrocatalyst with 18 μ g Pt/cm² (20% Ru; 2% Pt, 3% air bleed), and small losses after 1000 h with 18 μ g Pt/cm² (10% Ru; 1% Pt, 4% air-bleed) and very small losses in a 600 h test with 19 μ g Pt/cm² (2% air-bleed) of combined CO/H₂ and H₂ operation.
- ➤ The DOE durability target of 2000h for 2005 can be reached with this electrocatalyst.
- ➤ The DOE target for 2005 for noble metals of 0.6 g/kW (0.3 g/kW for anode) is met for Pt: **only 0.063 g Pt/kW is necessary**. If Ru is counted, 0.630 g total metal is needed.

CATHODE

- \triangleright A Pt monolayer on C-supported metal or metal alloy nanoparticles can be an active catalyst for O_2 reduction.
- ➤ The Pt mass-specific activity of Pt/Pd/C is 5-8 times higher than that of Pt(10%)/C. The (Pt + Pd) mass activity is 2.5 times higher. Fuel cell tests (F. Uribe) are quite promising.
- ➤ A PdCo/C electrocatalyst was synthesized. Its activity is comparable to that of Pt.
- A Pt/AuNi/C electrocatalyst was synthesized whose activity is similar to that of Pt.

LONG-TERM FUEL CELL TESTS AT LANL (F. Uribe)

Voltage losses after 1000 hr:

* with neat H₂: 40 mV with H₂+CO+4% air: 60 mV

Cell=50 cm2; T= 80 C; A: 0.19 mg /cm2(10%Ru, 1%Pt) C: 0.23 mg Pt /cm2(20% Pt/C, ETEK) Total run time = 1000 hours at constant current. 710 hours of operation with clean H2 and 290 hours with H2 + 50 ppm CO + 4 % air bleed.

19 μg Pt/cm² (10% Ru; 1% Pt)

Voltage losses after 600 hr:

* with neat H₂: 20 mV

(0.71-0.69 V)

* with H₂+CO+2% air: 20 mV

(0.66-0.64 V)

Cell 50 cm² cell / T= 80 C

A: 0.19 mg BNL/cm² (10% Ru; 1% Pt)

C: 0.22 mg Pt/cm² (ETEK)

H₂ 471 hr; H₂ + CO 50 ppm

+2% air bleed, 129 hr

18 μg Pt/cm² (20% Ru; 2% Pt)

No voltage losses after 868 hr:

time/hours

600

800

1000

0.701

initial V final V with H_2 : 0.717 0.717

* with H_2 +CO+3% air:

400

200

0.697

Cell 50 cm² cell / T= 80 C

A: 0.20 mg BNL/cm² (20% Ru; 2% Pt)

C: 0.24 mg Pt/cm² (ETEK)

Running Mode: 20 A current

a) H₂ at @ 1.3 stoich

b) H₂ at @ 1.3 stoich + CO 50 ppm

+3% air bleed

Air flow: constant @ 2100 sccm

In addition to CO tolerance, **the very strong surface segregation** of Pt is a key factor in its stability.

ELECTRONIC EFFECTS vs. BIFUNCTIONAL MECHANISM IN CO TOLERANCE OF THE PtRu₂₀ ELECTROCATALYST

Pt foil

0.30

Conclusion: Both the electronic effects and the "bifunctional" mechanism are operative for this electrocatalyst.

The kinetic currents are calculated as a function of E and the anion adsorption isotherm, $\theta_A(E)$ using

$$j_k(E) = -j_0 (1 - \gamma_A \theta_A(E))^m$$

$$\exp(-2.3(E - E^0 - \varepsilon_A \theta_A(E))/b),$$

where j_0 and b are the intrinsic kinetic parameters, γ_A is the geometric blocking factor, and ε_A is the electronic effect of adsorbed anions

- •The best fits yielded the intrinsic Tafel slope in the range -118 to -130 mV/dec.
- •In addition to site blocking, both OH and bisulfate have a negative electronic effect on ORR kinetics, with the effect of the latter being much stronger.
- The deviation of the apparent Tafel slope in HClO₄ from its intrinsic value can be fully accounted for by the site blocking and electronic effects of adsorbed OH ions, which vary with coverage over the mixed kinetic-diffusion controlled region.

Wang et al. J. Phys. Chem., in press.

O₂ REDUCTION ON Pt_{1ML}/Pd(111)

ACTIVITY OF Pt MONOLAYERS AS A FUNCTION OF THE FRACTIONAL FILLING OF THE d-BAND OF SUBSTRATES

Adsorption energies of atomic oxygen on Pt monolayers vs. d-band centers

fcc(111); (2x2x4) unit cell; top two layers relaxed; PW91 functional

DFT calculations by M. Mavrikakis, U. Wisconsin.

Pd(10%) / Vulcan XC-72 commercial

O₂ REDUCTION ON Pt/Pd/C

Pt and (Pt + Pd) MASS-SPECIFIC ACTIVITY OF $Pt_{ML}/Pd/C$ FOR O_2 REDUCTION

FUEL CELL TESTS OF Pt/Pd/C AT LANL (F. Uribe)

Performance of Pt-Pd/C (BNL) cathode catalyst at 80 °C.

Performance of Pt-Pd/C (4% Pt-20% Pd) cathode catalyst at 80 °C. Membrane: Nafion® N1135.

Anode loadings in mg Pt/cm2: Cell **a:** 0.22 ; Cell **b:** 0.18 ; Cell **c**: 0.17.

O₂ REDUCTION ON PdCo/C

O₂ REDUCTION ON Pt/AuNi/C

Further reduction of Au and the use of an immiscible $Au_{ML}Ni$ alloy seem possible.

INTERACTIONS AND COLLABORATIONS

- 1. Los Alamos National Laboratory Dr. Francisco Uribe longterm fuel cell tests of electrocatalysts.
- 2. Plug Power, visit, discussions.
- 3. Interest expressed in the PtRu₂₀ electrocatalyst and collaboration.

Publications from collaborations:

K. Sasaki, J.X. Wang, M. Balasubramanian, J. McBreen, F. Uribe, R.R. Adzic, Ultra-low Platinum Content Fuel Cell Anode Electrocatalyst with a Long-term Performance Stability, Electrochim. Acta, in press.

K. Sasaki, Y. Mo, J.X. Wang, M. Balasubramanian, F. Uribe, J. McBreen, R.R. Adzic, Pt submonolayers on metal nanoparticles – novel electrocatalysts for H₂ oxidation and O₂ Reduction, Electrochim. Acta, 48 (2003) 3841.

J.X. Wang, N.M. Markovic, R.R. Adzic, Kinetic Analysis of O₂ reduction on Pt(111) in Acid Solutions: Intrinsic Kinetic Parameters and Anion Adsorption Effects, J. Phys. Chem. in press.

BROOKHAVEN NATIONAL LABORATOR

Responses to Previous Year Reviewers' Comments

- Q. Distinction from Wieckowski's catalyst not clear.
- A. His: Ru on Pt for methanol oxidation; ours: Pt on Ru for H_2/CO oxidation.
- Q. Not clear how structure/phase behavior (of CO) is exploited to design practical catalysts.
- A. Knowing adsorbate's mobility, lateral interactions and adsorption sites can help in designing electrocatalysts.
- Q. Cathode materials of higher importance and needs to be expanded.
- A. The work on cathode materials has been expanded.

FUTURE WORK

H₂ oxidation

1. Pt submonolayers on non-noble metal alloy nanoparticles.

O₂ reduction

- 1. Further development of a Pt/Pd/C electrocatalyst. Tests at LANL.
- 2. Further development of immiscible Au-non-noble metal alloy nanoparticles as support for Pt.
- 3. Multi-metal monolayers to reduce PtOH coverage and to modify the electronic properties of Pt.
- 4. Non-noble metal alloys as support for Pt.

